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This paper is one that David Maull would have enjoyed savaging. Firstly, because he always
enjoyed lively discussions about hare-brained schemes for using feedback control to produce
unnatural states of motion, and secondly, because he was never happier than when probing
details of imaginative undergraduate projects. This paper results from such a project in the
group where David spent most of his professional life, a project so far-fetched that it would have
attracted his most critical attention. It would also have attracted his characteristically en-
couraging support.

The idea that instabilities of inviscid vortex sheets, which prevent them from being naturally
steady, might be controlled through suitably excited actuators is being tentatively advanced,
and some peculiar features of the controlled state also attract attention. The project that
produced this paper addressed one peculiarity that turned out to be an error [see Ffowcs
Williams (1982)], the solution to the actively controlled sheet turning out to be di!erent and
much simpler; this solution is published in Ffowcs Williams (2001). The project went on to
consider whether another planar interface that is naturally unstable might be made stable by
the action of an adjustable nearby surface. The situation envisaged is an unstable density
strati"ed arrangement where heavy #uid lies initially at rest above a lighter #uid, the interface
between the two #uids being planar. Above the interface is an impervious structural surface,
which can be moved by a small amount by actuators designed to induce in the #uid a motion
that will prevent the growth of any gravitational mode of instability. We show that it is indeed
possible to de"ne a controller with the required performance, but its implementation would be
a very demanding task. A "nite body of #uid could, on the other hand, be held suspended
against gravity by relatively straightforward control arrangements. A particular example is
worked out in detail and the control actuators de"ned, as is the transfer function between small
oscillations of the interface and the actuator that is needed to implement the control system. An
example is given to show how the unstable (but controlled) interface wobbles but settles down
to rest after su!ering an externally induced disturbance. ( 2001 Academic Press
1. INTRODUCTION

THE EARLY STAGES OF FLOW INSTABILITY that eventually lead to unsteadiness can be modelled
using linear theory. This is based on the idea that all disturbances are in"nitesimally small
at birth; small disturbances are linear and hence their behaviour can be described by
linearising the equations of #uid motion about the steady solution.

Active control might sometimes be used to prevent the growth of disturbances in
a naturally unstable #ow. The control system would be coupled to the original #ow system,
and be designed, based on a linear model of the #ow, so that the coupled system became
stable. Disturbances would then never grow to such amplitudes that results in the
889}9746/01/071089#14 $35.00/0 ( 2001 Academic Press
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breakdown of the steady #ow. Peak & Crighton (2000) have recently summarised this topic,
and given examples of #ow instabilities calmed by linear controllers.

This paper considers two speci"c cases of the negative buoyancy instability, featuring
two-dimensional motion in a body of water suspended on the underside of a ceiling. The
"rst case is the unbounded layer of water and the second a layer con"ned between two
vertical walls. Surface tension exists, and the extent of the con"ned layer in the second
example is such that only one wavelength is gravitationally unstable. It is shown that it is
possible to stabilise these systems using active control, and that the control system required
for the single mode example is both simple and realisable. This means that the seemingly
unnatural state of maintaining water on the underside of a ceiling inde"nitely is in fact both
possible and feasible.

The purpose of the paper is not to put forward a serious proposal for keeping water on
the ceiling, but rather to demonstrate for simple cases that active control techniques really
can be used to prevent instabilities occurring in naturally unstable continuous systems. In
doing so, they can dramatically change the natural properties of the system.

2. THE UNBOUNDED LAYER

The unbounded system consists of a layer of water suspended underneath a ceiling in
a gravitational "eld. Below the water there is air whose density is assumed to be negligible
compared to that of the water. The interface has constant surface tension ¹ per unit depth
into the page. It is assumed that the water is incompressible and inviscid. Although the
density change across the interface will generate vorticity, the inviscid assumption means
that the vorticity cannot di!use away from the interface and the water remains irrotational.
Figure 1 gives a schematic of the problem.

Since water is denser than air, the negative buoyancy instability may occur. In order to
investigate the idea that it is possible to use an active controller to inhibit this instability,
a highly idealised form of active control is considered. It is assumed that the upper surface at
y"H can deform into a shape e (x, t), and that a linear controller makes e (x, t) a linear
function of the interface displacement. It is thereby assumed that the space}time Fourier
transform of the displacement of this upper surface, eL (k, u), can be made to be some
function, Z(k, u), multiplied by the space}time Fourier transform of the interface displace-
ment, gL (k, u). That is, we get

eL (k, u)"Z(k, u) gL (k, u). (1)

2.1. DETERMINING THE STABILITY OF THE SYSTEM

A #ow is spatially unstable if a localised disturbance grows as it develops in space and is
temporally unstable if an initial disturbance grows as time progresses. For most real #ows,
time and space are strongly coupled and there is a strong interrelation between spatial and
temporal instability.

The interface displacement, g(x, t), can be written in terms of its Fourier transform as

g (x, t)"
1

4n2 P
=

~=
P

=

~=

gL (k, u)e*kxe*ut dkdu . (2)

The displacement g (x, t) is thus decomposed into Fourier elements in space and time.
A single element of wavenumber k and frequency u is an elementary wave:

gL (k, u)e*kxe*ut"gL (k, u)e*k(x`ut@k)"gL (k, u)e*k(x~ct).



Figure 1. The unbounded layer of water.
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It has constant phase on trajectories x"ct, where c is the wave/phase speed and is given by
c"!u/k.

To investigate the spatial stability of the system, it is assumed that the disturbance is
localised and is periodic in time. This means that u is real. From equation (2) it can be seen
that if the wave speed, c, has an imaginary component, there can be an exponentially
increasing term inside the integral. This represents the disturbance growing with distance,
and thus means that the system is spatially unstable. Similarly, to investigate temporal
stability, it is assumed that an initial disturbance that is periodic in space occurs. This means
that k is real. Again, if the wave speed, c, has an imaginary component, it can be seen from
equation (2) that there can be an exponentially increasing term inside the integral, which
represents growth of the disturbance as it develops in time. Thus, if the wave speed has an
imaginary component, the system can be, and in fact is, temporally unstable.

So, the system in Figure 1 is both temporally and spatially unstable if the wave speed,
c"!u/k, has an imaginary component of the right sign. The aim of the active control is to
ensure that the wave speed becomes entirely real, since this ensures that instability does not
occur.

2.2. ANALYSIS

The #ow in the water region is incompressible, inviscid and irrotational, and therefore obeys
Laplace's equation and the unsteady Bernoulli equation,

L2/
Lx2

#

L2/

Ly2
"0, (3)

p#o
L/
Lt

#ogy#
1

2
oDv D2"constant. (4)

Force equilibrium at the interface relates the pressure di!erence to the capillary force,

pJ K
2
!pJ K

1
#(¹k2!u2m)gL "0. (5)

The boundary conditions for velocity are

L/

Ly
"

Le
Lt

at y"H#e(x, t) (e small);

L/

Ly
"

Lg
Lt

at y"g (g small).
(6)



Figure 2. A plot of (g!¹k2/o)k sinh(kH) against k.
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Combining equation (3) to equation (5) and applying equation (6) gives the following
expression for the wave speed (c"!u/k),

c2AokA
1

tanh (kH)
!

Z (k, u)

sinh(kH)BB#og!¹k2"0. (7)

It is not possible to solve this equation for c without assuming more about the form of
Z(k, u). This is because Z, by nature of being a function of k and u, is also a function of c.

2.3. IDENTIFYING A CONTROLLER

If a simple trial function for Z is chosen to be Z"A/u2, where A is a constant, it is found
that the expression for the wave speed becomes

c2A
ok

tanh(kH)B#og!¹k2!
oA

sinh(kH)
"0. (8)

The c2 coe$cient is always positive which means that the requirement for stability is that
Im(A)"0 and Re(A)5(g!¹k2/o)k sinh(kH).

A graph of (g!¹k2/o)k sinh(kH) against k is shown in Figure 2. It is worth noting that,
in the absence of any control input (i.e. A"0), c is purely real and the system is stable when
the (g!¹k2/o) term is positive. This corresponds to surface tension e!ects being larger
than gravitational e!ects. Conversely, c is purely imaginary and the system is unstable when
(g!¹k2/o) is negative. Note that the k sinh(kH) factor is always positive.

The graph is seen to have two distinct maxima, which implies that if the constant A is
chosen to be su$ciently large, instability is prevented for all wavelengths. It is interesting to
note that Z"A/u2 implies that u2eL (k, u)"AgL (k, u). Hence, this form of transfer function
is equivalent to controlling the vertical acceleration of the surface at y"H to mimic the
interface displacement, not one would think an impossible task if the necessary distributed
actuators were available.



Figure 3. The con"ned layer of water.
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3. THE LAYER CONFINED BETWEEN VERTICAL WALLS

A more practical example is provided when the same layer of water is con"ned between two
vertical walls, a distance ¸ apart. The ceiling now contains a single plunger whose vertical
motion can be controlled; see Figure 3. It is assumed that the displacement of the plunger is
so small that the #ow it produces is strictly linear.

3.1. ANALYSIS

To account for the e!ect of the vertical walls, the method of images is used. The correct
image system is shown in Figure 4; it is in"nite and periodic in x with period 2¸. This
suggests the use of the general range Fourier series for 04x42¸. Symmetry about x"0
implies that the sine coe$cients in the Fourier series for the interface displacement, ceiling
velocity and velocity potential will be zero and that only the cosine terms need be
considered.

The interface displacement and ceiling velocity can be expressed as the following Fourier
series, where the &&hat'' denotes a Fourier transform,

g(x, t)"
=
+
n/1
G

1

2n P
=

~=

gL (n, u)e*ut duH cos (nnx/¸), (9)

v (x, t)"
=
+
n/1

2[sin(nnx
2
/¸)!sin(nnx

1
/¸)]

nn A
1

2n P
=

~=

vL (u)e*utduB cos(nnx/¸). (10)

The #ow in the water region is incompressible, inviscid and irrotational, and therefore obeys
Laplace's equation and the unsteady Bernoulli equation [i.e., equations (3) and (4)].

Force equilibrium at the interface, where pJ
1

is the pressure #uctuation directly above the
interface gives

!pJ
1
#¹

L2g
Lx2

"0. (11)



Figure 4. The image system.
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The boundary conditions for velocity are

L/

Ly
"

Lg
Lt

at y"g (g small) and
L/

Ly
"v (x, t) at y"H. (12)

Applying equations (3), (4) and (11) and making use of equation (12) gives the following
relationship between the plunger velocity and the interface displacement:

gL (n, u)A¹A
nn
¸ B

2
!og!

ou2¸

nn tanh(nnH/¸)B"vL (u)
4o¸iue~nnH@L [sin(nnx

2
/¸)!sin(nnx

1
/¸)]

n2n2(1!e~2nnH@L)
.

(13)

This is an important equation. The natural frequencies of the uncontrolled system can be
deduced from it by setting vL (u)"0. Ignoring the trivial solution in which there is no
disturbance gives the natural frequencies as

u
n
"$S

nn tanh(nnH/¸)

o¸ A¹A
nn

¸ B
2
!ogB . (14)

Instability of a mode is characterised by its natural frequency having a nonzero imagi-
nary part of the correct sign. If the natural frequency is purely real, the corresponding mode
is marginally stable. These arguments, combined with equation (14) can be used to translate
the requirement that only the "rst mode is unstable into an allowed range for the channel
width ¸. The allowed range is given in equation (15) and interestingly is independent of
water depth, H,

nS
¹

og
(¸(2nS

¹

og
. (15)

Note that if the "rst n modes are required to be unstable then the allowed range for the
channel width remains independent of H and becomes,

nnS
¹

og
(¸((n#1)nS

¹

og
.

If it is required that all modes be stable, the restriction on the channel width becomes

¸(nJ¹/og. Hence, in theory, H can be in"nitely large and surface tension alone can
&&hold up'' an in"nite amount of water!

Some realistic values for the water}air system being considered are ¹"0)074 kg/s2,
o"1000 kg/m3 and g"9)81 m/s2. Substituting these into equation (15) gives the allowed
channel width range as being 8)6 mm(¸(17)3 mm. Choosing ¸"14 mm, arbitrarily
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setting x
1
"3 mm, x

2
"6 mm, H"10 mm and substituting into equation (7) gives the

transfer function from vL (u) to gL (n, u) as being

gL (n, u)

vL (u)
"

4o
1
iue~nnH@L [sin(nnx

2
/¸)!sin(nnx

1
/¸)]/(n2n2(1!e~2nnH@L))

¹ (nn/¸)2!o
1
g!o

1
u2¸/nn tanh(nnH/¸)

"

60iue~2>094n [sin(1)257n)!sin(0)628n)]/(n2n2(1!e~4>189n))

3246n2!9810!(4)775u2)/n tanh(2)094n)
. (16)

3.2. DESIGNING A CONTROL SYSTEM

For a transfer function to be used as the basis of any control system design, it must be
between an easily controllable and an easily measurable quantity. Whilst v (t) might be
easily controllable, g (n, t) is not so easily measurable. In its present form, equation (16) is
therefore not a good basis for control system design; further manipulation is required.

Expressing gL (x, u) as a Fourier series gives gL (x, u)"+=
n/1

gL (n, u) cos(nnx/¸). Hence, the
time Fourier transform of the interface displacement at x"0 can be written as

gL (x"0, u)"
=
+
n/1

gL (n, u)"gL (1, u)#gL (2, u)#gL (3, u)#2

Substituting the values of n into equation (10), the transfer function from vL (u) to gL (x, u)
becomes

gL (x"0, u)

vL (u)
"

0)2138iu
!6)084!4)558u2

#

!0)00863iu
5095!2)229u2

#

!0)00127iu
23730!1)485u2

#2 (17)

Since the system is causal, it is valid to recast equation (17) in terms of Laplace transforms
by setting s"iu,

gL (x"0, s)

vL (s)
"

0)2138s

!6)084#4)558s2
#

!0)00863s

5095#2)229s2
#

!0)00127s

23730#1)485s2
#2. (18)

Now, g(x"0, t) represents the interface displacement at one of the walls and is therefore
a measurable property of the system and (18) can be used as the basis for the control system
design. Although in its present form it is the sum of an in"nite series, it can be seen from
equation (16) that the terms quickly become smaller as n increases. This means that it is
reasonable to approximate the series by a "nite number of terms. Since the design of the
control system will be based on this approximated transfer function, it is necessary to
include at least those terms which represent unstable modes.

3.2.1. Modelling only the ,rst mode

Since only the "rst mode is unstable, the transfer function can be approximated by just the
"rst term. This transfer function is denoted by G

1
(s),

G
1
(s)"

gL (x"0, s)

vL (s)
"

0)2138s

!6)084#4)558s2
. (19)

The root locus diagram (Franklin et al. 1992) for G
1
(s) is shown in Figure 5. The

right-half-plane pole con"rms that the system is naturally unstable.
The control system is shown in Figure 6. From the root locus diagram for G

1
(s), it is

apparent that an unstable controller is required for closed loop stability. Considering



Figure 5. The root locus diagram for G
1
(s).

Figure 6. The control system.
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a controller of the form k
1
K

1
(s)"(as#b)/(s!c) and applying the Routh}Hurwitz stabil-

ity criteria reveals that the closed loop stability will be achieved if a'606123, b'28456
and c'0. An example of a controller which satis"es these criteria is
K

1
(s)"(s#20)/(s!10) with k

1
"3000. The root locus diagram for G

1
(s)K

1
(s) is shown in

Figure 7; it can be seen that k
1
"3000 indeed stabilises the system. The Nyquist diagram for

G
1
(s)k

1
K

1
(s) is shown in Figure 8. There are two anti-clockwise encirclements of the !1

point, and there are two unstable open loop poles; this con"rms that the closed loop system
is stable.

There is a problem with attempting to control the #ow in this way, however. Since the
plunger velocity is being controlled, a tiny step disturbance, however small, causes the
plunger displacement to increase inde"nitely. Given that the #ow model is based on the
assumption that the plunger displacement is small, this is a less than desirable e!ect. To
eliminate this problem, the plunger displacement rather than its velocity should be control-
led. The new control system is shown in Figure 9.



Figure 7. The root locus diagram for K
1
(s)G

1
(s). Figure 8. Nyquist diagram for k

1
K

1
(s)G

1
(s).

ACTIVE FLOW CONTROL 1097
The root locus for H
1
(s)"sG

1
(s) is shown in Figure 10. The poles and zeros are identical

to those for G
1
(s), except for the extra zero at the origin. It is observed that all branches of

the plant-controller root locus will have a portion in the left-half plane if the controller
consists of two left-half-plane poles near the origin, a right-half-plane pole and two
left-half-plane zeros, all appropriately placed. Many controllers can thus achieve stability of
the system. However, careful choice of the controller allows the steady state gain from the
noise input to the plunger displacement to be minimised, while still ensuring good stability
margins. A good compromise is o!ered by

K
1
(s)"

(s#27) (s#27)

(s!35) (s#12) (s#12)
with k

1
"2000.

Figure 11. shows the root locus diagram for H
1
(s)K

1
(s).

The motion of the water surface as a function of x and time can be represented using
a surface plot. The wall displacement as a function of time is known from the control system
and is a sum of contributions from all modes [see equation (20)]. If the contribution from
each mode is known, the interface displacement as a function of x can be found using
equation (21),

g(x"0, t)"
=
+
n/1

g (n, t), (20)

g(x, t)"
=
+
n/1

g (n, t) cos(nnx/¸). (21)

The contribution decreases with mode number, and so both series can be approximated by
just the "rst term. This means that g(x, t)"g(x"0, t) cos (nx/¸). The surface plot due to
a &&pulse'' input of 10~5 m is shown in Figure 12. The &&pulse'' involves a step of 10~5 m at
t"0 followed by another step of !10~5 m shortly afterwards. The surface plot clearly
shows the shape of the "rst mode, and the fact that the disturbance decays in time.

3.2.2. Modelling the ,rst three modes

When the "rst three terms are included, the transfer function becomes

G
2
(s)"

gL (x"0, s)

vL (s)
"

0)2138s

!6)084#4)558s2
#

!0)00863s

5095#2)229s2
#

!0)00127s

23730#1.485s2
.



Figure 9. The new control system.

Figure 10. The root locus diagram for H
1
(s).

1098 J. F. FFOWCS WILLIAMS AND A. S. MORGANS
The root locus diagram for G
2
(s) is shown in Figure 13 and con"rms that the second and

third modes are naturally marginally stable. Figure 14 reveals that the control system
designed to stabilise the "rst mode actually destabilises higher modes. In practice, dissi-
pative e!ects would cause the pole}zero pairs to occur slightly into the left-half plane
making destabilisation less likely. However, it is important that there is a way of dealing
with this e!ect.

Extra controllers which place left-half plane pole-zero pairs very close to the existing
imaginary axis pairs can be used; they &&drag'' the root locus branches into the left-half plane,
preventing instability. The e!ect is clearly seen in Figure 15. The extra controllers can be
combined with a controller similar to that previously derived. A good design for this system
was found to be

K2(s)"
(s2#54s#729)(s2#0)5s#15700) (s2#0)5s#2250)

(s3!11s2!696s!5040) (s2#0)5s#16500) (s2#0)5s#2650)
with k2"2500.

The interface motion due to a &&pulse'' input is shown in Figure 16. The presence of the
closed loop poles near the origin due to the higher modes cause the high frequency
oscillations to be superimposed on the main response.



Figure 11. The root locus diagram for H
1
(s)K(s).

Figure 12. Surface plot for a &&pulse'' input of 10~5 m.
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3.2.3. More than one unstable wavelength

If the channel width is such that there are two unstable wavelengths, the root locus diagram
takes the form shown in Figure 17. There are two right-half-plane poles, and no combina-
tion of controller poles and zeros can cause all branches of the combined root locus to have
a portion in the left-half plane. The same is found for there being more than two unstable



Figure 13. The root locus diagram for G
2
(s).

Figure 14. The root locus diagram for G
2
(s)K

1
(s).
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wavelengths. Thus, unsurprisingly, a system with two or more unstable wavelengths cannot
be stabilised by controlling the vertical motion of a single plunger. More control actuators
would be needed to give more control degrees of freedom. What has been considered in this
paper is probably the simplest case, which was the intention for ease of illustration.



Figure 15. The root locus diagram for G
2
(s)K

2
(s).

Figure 16. Surface plot for a &&pulse'' input of 10~5 m.

ACTIVE FLOW CONTROL 1101
4 CONCLUSIONS

It has been shown that active control can be used to stabilise two speci"c cases of the
negative buoyancy instability. For an unbounded layer of water containing an in"nite
number of unstable modes, an idealised controller has been identi"ed which would stabilise
the system. For a layer con"ned between two vertical walls in such a way that there is just
one naturally unstable wavelength, a simple, realisable controller has been designed which
would stabilise this wavelength. Both these cases illustrate that it is possible, and sometimes



Figure 17. The root locus diagram when there are two unstable modes.
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feasible, to retain a layer of water attached to the underside of a ceiling inde"nitely. This
seemingly unnatural state is brought about because the natural properties of the coupled
#ow-controller system di!er signi"cantly from those of the #ow system alone.

REFERENCES

FFOWCS WILLIAMS, J. E. 1982 Sound sources in aerodynamics* Fact and "ction. AIAA Journal 20,
307}315.

FFOWCS WILLIAMS, J. E. 2001 Active #ow control. Journal of Sound and <ibration 239, 861}871.
PEAKE, N. & CRIGHTON, D. G. 2000 Active control of sound. Annual Review of Fluid Mechanics 32,

137}164.
FRANKLIN, G. F., POWELL, J. D. & EMAMI-NAEINI, A. 1994 Feedback Control of Dynamic Systems.

Reading, MA: Addison Wesley, Chapter 5, pp. 243}336.


	1. INTRODUCTION
	2. THE UNBOUNDED LAYER
	Figure 1
	Figure 2
	Figure 3

	3. THE LAYER CONFINED BETWEEN VERTICAL WALLS
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16

	4 CONCLUSIONS
	Figure 17

	REFERENCES

